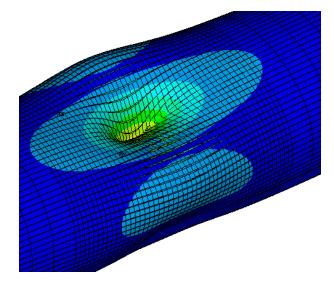

Working in Nuclear Power Projects


Shen Wang, PhD, PE

Professional Background

Design / analysis in 15 Nuclear Power Plants

- Nuclear containment analysis
- Seismic evaluation
- Missile impact analysis
- 1. Palo Verde Nuclear Power Plant (USA)
- 2. San Onofre Nuclear Power Plant (USA)
- Davis Besse Nuclear Power Plant (USA)
- 4. Turkey Point Nuclear Power Plant (USA)
- 5. Hatch Nuclear Point Plant (USA)
- 6. Calvert Cliff Nuclear Power Plant (USA)
- 7. Bellefonte Nuclear Power Plant (USA)
- 8. Crystal River Nuclear Power Plant (USA)
- 9. Maanshan Nuclear Power Plant (Taiwan, RC)
- 10. Vogtle Nuclear Power Plant (USA)
- 11. Farley Nuclear Power Plant (USA)
- 12. Wolfcreek Nulcear Power Plant (USA)
- 13. Generation mPower (USA)
- 14. Barakah Nuclear Power Plants (United Arab Emirates)
- 15. Columbia Nuclear Generation Station (USA)

General Information

- Worldwide
 - More than 400 Nuclear Power Plants (150)
 - 17% of total electricity power
- United States
 - 104 Nuclear Power Plants (88)
 - 20% of total electricity power
- China
 - 6 Nuclear Power Plants
 - 1% of total electricity power
- Industry Setback after Fukushima Catastrophic Event

Advantage / Disadvantage

High EPC Cost vs. Low Operating Cost

- Nuclear Power Plant:
 - High initial EPC cost (\$5 Billion for a 1000MW NPP, NEI Financial Model, 2013)
 - ➤ Low operating cost / more profit (\$0.0024 / kWh, NEI chart, 2012)
 - High financial risk for investment
- Gas Combined Cycle Power Plant:
 - Low initial EPC cost (\$1 Billion for a 1000MW CCP, NEI Financial Model, 2013)
 - ➤ High operating cost / less profit (\$0.0034 /kWh, NEI chart, 2012)
- Zero Global Warming Contribution vs. Radiation Risk

US Regulation, Code and Standard

- US Nuclear Regulatory Commission (USNRC)
- Codes and Standards for NPP (Civil /Structural)
 - > ACI 349 (committee member, ACI 349B)
 - American Concrete Institute (ACI)
 - Concrete nuclear structures (except Concrete Containment)
 - > **ASME BPV III** (*committee member*, WG Design Methodology)
 - American Society of Mechanical Engineers (ASME)
 - Construction of nuclear facility components (including Steel Containment)
 - > ACI 359 / ASME BPV III Div.2 (committee member, Main Committee)
 - ACI / ASME Joint committee
 - Nuclear Concrete Containment
 - > **AISC N690**
 - American Institute of Steel Construction (AISC)
 - Steel structures in nuclear power plants (except Steel Containment)

EPC Project: \$5~10 Billion

- Engineering
 - Nuclear
 - Mechanical
 - Electrical
 - Civil / Structural
 - Geotechnical / Water
- Procurement
- Construction

Working Environment: Industry

- Companies
 - Small Firm vs. <u>Large Corporation</u>
- Projects
 - Small vs. <u>Large</u>
 - Commercial vs. <u>Industry</u>
- Required Skills
 - Broad vs. <u>Specialized</u>
 - Independent vs. <u>Teamwork</u>

Working Environment: Engineering

Typical Project Organization

Engineer → Engineering Supervisor → Project Engineer → Project Manager → Project Director

Typical Function Organization

Specialist /Staff Engineer → Chief Engineer → Engineering Manager
→ Principle Engineer → Technology Manager

Engineering Work

Originator → Checker → Engineering Supervisor → Specialist/ Staff Review

Tips for Recognition

- Raise and promotion of an engineer is determined by recognition he / she receives
- Key Person: direct manager who performed your review
- Think from the perspective of your direct manager
 - Benefit you can bring to him / her
 - Benefit for him / her to promote you
 - Avoid bypassing him /her in order to impress the higher level manager
 - Others

Tips for Being Distinguish

- Understand Your Strength and Weakness
- Find the Gap
- Take Initiative
- Seize Opportunities

